

AMETEK ADVANCED MEASUREMENT TECHNOLOGY

EMX-75XX SERIES

64-CHANNEL DIGITAL INPUT/OUTPUT

USER'S MANUAL

P/N: 82-0127-022 Released April 19, 2017

VTI Instruments

2031 Main Street Irvine, CA 92614-6509 (949) 955-1894

TABLE OF CONTENTS

TABLE OF CONTENTS	2
Certification	4
Warranty	4
Limitation of Warranty	4
Trademarks	4
Restricted Rights Legend	4
GENERAL SAFETY INSTRUCTIONS	5
Terms and Symbols	5
Warnings	5
SUPPORT RESOURCES	7
SECTION 1	8
INTRODUCTION	8
Overview	
Features	
PREPARATION FOR USE	
Unpacking	
Inspecting the EMX-75xx Series	
INSTALLATION	
Install EMX-75xx	9
STORAGE AND SHIPMENT	
Storing Instruments	10
Transporting Instruments	
ORDERING INFORMATION	10
Accessories Required	11
EMX-75xx Accessories	11
SPECIFICATIONS	11
Technical Specifications	11
Environmental Specifications	12
SECTION 2	13
EMX-7510, 64-Channel, Digital I/O Card	
EMX-7510 Specifications.	
Using the Instrument	
Measurement Performance	
Connector Pin/Signal Assignment	
EMX-7510-TB160SE Terminal Block	
Theory of Operation	
Overview	
Configuration Section	20
Output Section	
Input Section	21
TTL/LV Emulation Sourcing Current Typical connection	21
Sinking Current Typical connection	
EMX-7511, 64-CHANNEL, DIGITAL I/O TTL CARD	23
Block Diagram	23
Connector Pin/Signal Assignment	24
EMX-7511 Specifications	24
EMX-7512, 64-CHANNEL, DIGITAL I/O LV TTL CARD	25
Block Diagram	25
Connector Pin/Signal Assignment	26
EMX-7512 Specifications	26

EMX-7513, 32 DI, 32DO-CHANNEL, DIGITAL I/O CARD	
Block Diagram	
Connector Pin/Signal Assignment	
EMX-7513 Specifications	
EMX-7514, 64-CHANNEL, DIGITAL OUTPUT CARD	
Block Diagram	
Connector Pin/Signal Assignment	
EMX-7514 Specifications	
EMX-7515, 64-CHANNEL, DIGITAL INPUT CARD	
Block Diagram	
Connector Pin/Signal Assignment	
EMX-7515 Specifications	
SECTION 3	
SOFTWARE INSTALLATION	
Driver Installation	
IVI Shared Components Installation (Windows Only)	
Instrument Driver Installation	
Programming the Instrument	
Related Software Components	
Using the Driver	
USING THE EMX-75XX SERIES	
Initializing\Closing the Instrument	
Basic Operation	
SECTION 4	41
SFP OPERATION	41
Introduction	41
Common Issues	
Multiple Network Ports	
Firewall	43
General Web Page Operation	
Login	
Index	
VTI Instruments Logo	46
Monitor and Control Page	46
Normal Mode Configuration	
Port Configuration Fields	
Pattern Mode Configuration	
Device Info Tab	

CERTIFICATION

VTI Instruments (VTI) certifies that this product met its published specifications at the time of shipment from the factory. VTI further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

The product referred to herein is warranted against defects in material and workmanship for a period of three years from the receipt date of the product at customer's facility. The sole and exclusive remedy for breach of any warranty concerning these goods shall be repair or replacement of defective parts, or a refund of the purchase price, to be determined at the option of VTI.

For warranty service or repair, this product must be returned to a VTI Instruments authorized service center. The product shall be shipped prepaid to VTI and VTI shall prepay all returns of the product to the buyer. However, the buyer shall pay all shipping charges, duties, and taxes for products returned to VTI from another country.

VTI warrants that its software and firmware designated by VTI for use with a product will execute its programming when properly installed on that product. VTI does not however warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The warranty shall not apply to defects resulting from improper or inadequate maintenance by the buyer, buyersupplied products or interfacing, unauthorized modification or misuse, operation outside the environmental specifications for the product, or improper site preparation or maintenance.

VTI Instruments shall not be liable for injury to property other than the goods themselves. Other than the limited warranty stated above, VTI Instruments makes no other warranties, express or implied, with respect to the quality of product beyond the description of the goods on the face of the contract. VTI specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

TRADEMARKS

Java Runtime EnvironmentTM are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and other countries. LabVIEWTM and LabWindows/CVITM are trademarks of National Instruments Corporation. Visual Basic[®], Windows[®], and Internet Explorer[®] are registered trademarks of the Microsoft Corporation or its subsidiaries. Linux[®] is a registered trademark of the Linux Foundation. IVITM is a trademark of the IVI Foundation. BonjourTM is a trademark of Apple, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-7013.

VTI Instruments 2031 Main Street Irvine, CA 92614-6509 U.S.A.

GENERAL SAFETY INSTRUCTIONS

Review the following safety precautions to avoid bodily injury and/or damage to the product. These precautions must be observed during all phases of operation or service of this product. Failure to comply with these precautions, or with specific warnings elsewhere in this manual, violates safety standards of design, manufacture, and intended use of the product.

Service should only be performed by qualified personnel.

TERMS AND SYMBOLS

These terms may appear in this manual:

WARNING	Indicates that a procedure or condition may cause bodily injury or death.		
CAUTION	Indicates that a procedure or condition could possibly cause damage to equipment or loss of data.		

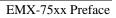
These symbols may appear on the product:

ATTENTION - Important safety instructions

Frame or chassis ground

Indicates that the product was manufactured after August 13, 2005. This mark is placed in accordance with *EN 50419, Marking of electrical and electronic equipment in accordance with Article 11(2) of Directive 2002/96/EC (WEEE)*. End-of-life product can be returned to VTI by obtaining an RMA number. Fees for takeback and recycling will apply if not prohibited by national law.

WARNINGS


Follow these precautions to avoid injury or damage to the product:

Use Proper Power Cord	To avoid hazard, only use the power cord specified for this product.
Use Proper Power Source	To avoid electrical overload, electric shock, or fire hazard, do not use a power source that applies other than the specified voltage.
Power Consumption	Prior to using these cards, it is imperative that the power consumption of all cards that will be installed in the mainframe be calculated on all power supply rails. <i>Failure to do so may result in damaging the switch card and the mainframe</i> .

WARNINGS (CONT.)

1

Avoid Electric Shock	To avoid electric shock or fire hazard, do not operate this product with the covers removed. Do not connect or disconnect any cable, probes, test leads, etc. while they are connected to a voltage source. Remove all power and unplug unit before performing any service. <i>Service should only be performed by qualified personnel.</i>
Ground the Product	This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground.
Operating Conditions	 To avoid injury, electric shock or fire hazard: Do not operate in wet or damp conditions. Do not operate in an explosive atmosphere. Operate or store only in specified temperature range. Provide proper clearance for product ventilation to prevent overheating. DO NOT operate if any damage to this product is suspected. <i>Product should be inspected or serviced only by qualified personnel.</i>
Improper Use	The operator of this instrument is advised that if the equipment is used in a manner not specified in this manual, the protection provided by the equipment may be impaired. Conformity is checked by inspection.

SUPPORT RESOURCES

Support resources for this product are available on the Internet and at VTI Instruments customer support centers.

AMETEK INC. VTI Instruments World Headquarters VTI Instruments Corp. 2031 Main Street Irvine, CA 92614-6509 Phone: (949) 955-1894 Fax: (949) 955-3041

AMETEK INC. VTI Instruments Cleveland Instrument Division 5425 Warner Road Suite 13 Valley View, OH 44125 Phone: (216) 447-8950 Fax: (216) 447-8951

AMETEK INC.

VTI Instruments Lake Stevens Instrument Division 3216 Wetmore Avenue, Suite 1 Everett, WA 98201 Phone: (949) 955-1894 Fax: (949) 955-3041

AMETEK Instruments India Pvt. Ltd. VTI - Bangalore Instrument Division

Divyasree N R Enclave, Block A, 4th Floor, Site No 1, EPIP Industrial Area, Whitefield, Bengaluru 560066, India Phone: +91 (0) 80 6782 3200 Fax: +91 (0) 80 6782 3232

Asia Support Phone: +852 9177 6127

Technical Support Phone: (949) 955-1894 Fax: (949) 955-3041 E-mail: <u>support@vtiinstruments.com</u>

Visit <u>http://www.vtiinstruments.com</u> for worldwide support sites and service plan information.

SECTION 1

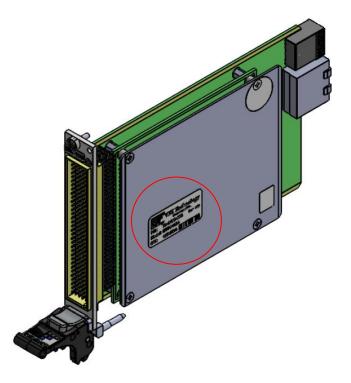
INTRODUCTION

OVERVIEW

The EMX-75xx Series is a family of high-performance PXIe modules consisting of multiple I/O configurations and logic levels. Dedicated input or output cards are available for high channel count applications while other cards provide ultimate flexibility with eight, 8-bit ports (64 channels) that can be configured as an input or output under programmatic control.

FEATURES

Models capable of sinking 300 mA include built-in clamping diodes, making these modules ideal for driving and sensing external devices such as relays, while all clamping diodes and open collector channels can be pulled up internally, rather than on a per channel basis, simplifying overall system cabling. Isolated models are also available for more demanding applications.


PREPARATION FOR USE

UNPACKING

When an EMX-75xx Series module is unpacked from its shipping carton, the contents should include the following items:

- An EMX-7510/EMX-7511/EMX-7512/EMX-7513/EMX-7514/EMX-7515
- VTI Instruments Distribution CD

All components should be immediately inspected for damage upon receipt of the unit. ESD precautions should be observed while unpacking and installing the instrument into a PXI Express chassis. The part number, model number, and serial number can be found on the side cover of the card as shown below.

FIGURE 1-1: SERIAL NUMBER LOCATION

INSPECTING THE EMX-75XX SERIES

The EMX-7510/EMX-7511/EMX-7512/EMX-7513/EMX-7514/EMX-7515 modules were carefully inspected both mechanically and electrically before shipment. They should be free of marks or scratches and they should meet their published specifications upon receipt. If the module was damaged in transit, do the following:

- Save all packing materials
- File a claim with the carrier
- Call a VTI Instruments sales and service office

INSTALLATION

INSTALL EMX-75xx

- 1. Set up the PXI Express chassis. See the Chassis' Installation Guide for assistance.
- 2. Make sure the PXI Express chassis is powered off.
- 3. Select a PXIe slot or a hybrid slot in the PXI Express chassis for the EMX-75xx and insert it carefully.
- 4. After the EMX-75xx is inserted all the way, secure it with the screws at the top and bottom of the EMX-75xx front panel.

STORAGE AND SHIPMENT

STORING INSTRUMENTS

Store the module in a clean, dry, and static-free environment. For other requirements, see storage and transport restrictions in *Specification*.

TRANSPORTING INSTRUMENTS

Package the module using the original factory packaging or packaging identical to the factory packaging. Containers and materials identical to those used in factory packaging are available through VTI Instruments offices. If returning the module to VTI Instruments for service, contact a VTI Service Center to set up an RMA. The following information will be required:

- Serial number
- Model number
- Type of service required
- Return address
- If applicable, a description of the problem that is being encountered which provides specific detail relating the instrument being returned.

In any correspondence, refer to the serial number and RMA number. Mark the container "FRAGILE" to ensure careful handling. If it is necessary to package the module in a container other than the original packaging, observe the following (although use of other packaging material is not recommended):

- 1. Wrap the module in heavy paper or anti-static plastic
- 2. Protect the front panel with cardboard
- 3. Use a double-wall carton made of at least 350 lbs test material
- 4. Cushion the module to prevent damage

CAUTION Do not use styrene pellets in any shape as packing material for the module. The pellets do not adequately cushion the module and do not prevent the module from shifting in the carton. In addition, the pellets create static electricity that can damage electronic components.

ORDERING INFORMATION

Model	Configuration
EMX-7510	64-CH DIO, Source/Sink, 60 V max Static I/O
EMX-7511	64-CH, DIO TTL, Static I/O
EMX-7512	64-CH, DIO LV TTL, Static I/O
EMX-7513	32DI/32DO, Source/Sink, 60 V max, Isolated Static I/O
EMX-7514	64 DO, Source/Sink, 60 V max, Isolated Static I/O
EMX-7515	64 DI, 60 V max, Isolated Static I/O

ACCESSORIES REQUIRED

EMX-75XX ACCESSORIES

CONNECTOR INFORMATION				
STRAIN RELIEF BRACKET KIT (INCLUDES CONNECTOR)				
VTI Part Number	70-0363-504 (recommended accessory)			
STRAIN RELIEF BRACKET KIT (WIT	HOUT CONNECTOR)			
VTI Part Number	70-0363-503			
CRIMP PIN				
VTI Part Number	52-0109-000 (includes 100 crimp pins)			
Manufacturer/Part Number	ERNI 234064			
MATING CONNECTOR				
VTI Part Number	27-0088-160 (one per board)			
Manufacturer/Part Number	ERNI 024070			
CRIMP PIN				
VTI Part Number	27-0088-000			
Manufacturer/Part Number	ERNI 014729			
CRIMP TOOL (DIN)				
VTI Part Number	46-0010-000			
Manufacturer/Part Number	ERNI 014374			
EXTRACTION TOOL (DIN)				
VTI Part Number	46-0011-000			
Manufacturer/Part Number	ERNI 471555			
TERMINAL BLOCK INFORMATION				
Description	EMX-7510-TB160SE, single-ended module			
VTI Part Number	70-0367-005			
UNTERMINATED CABLE ASSEMBLY				
Description	160-pin, unterminated cable assembly, 3 ft			
VTI Part Number	70-0363-505			

SPECIFICATIONS

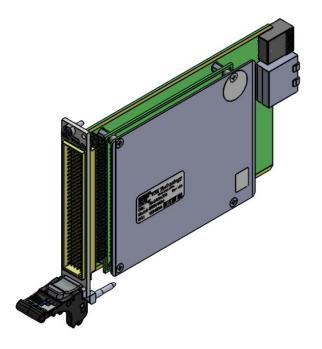
TECHNICAL SPECIFICATIONS

Data Card Specifications				
EMX-7510 Digital Input		Channels	64 (Eight 8-Bit Ports	
		V _{IN} (high)	>40% of VCLAMP	
		V _{IN} (low)	<16% of V _{CLAMP}	
		V _{IN} (max)	60 V	
	Data Output	V _{OUT} (high)	>2 V to 60 V	
	Characteristics	V _{OUT} (low)	<1.5 V @ 300m/A	
	Voltage Range	Internal Voltage Source	3.3 V, 5.0 V, 12.0, V, and 24.0 V	
		(V _{CLAMP)}		
		User Voltage (V _{CLAMP})	>2 V up to 60 V	
		Connector Type	ERNI 160-Pin	
	Modes	Immediate	Inputs and outputs read and written via	
			software control	
EMX-7511	Digital	Channels	64 (Eight 8-Bit Ports)	
	Input/Output	Logic Levels	Standard TTL	
EMX-7512	Digital	Channels	64 (Eight 8-Bit Ports)	
	Input/Output	Logic Levels	Standard LV TTL	
EMX-7513	Digital Input	Channels	32	
		Logical High	2.5 V to 60 V	
		Logical Low	<2.5 V	
		Isolation	1000 V	

Data Card Specifications				
	Digital Output	Channels	32	
		Sink/Source	50 mA to 60 V (AC/DC)	
		Potential Free	Yes	
		Isolation	1000 V	
		Connector Type	ERNI 160-Pin	
EMX-7514	Digital Output	Channels	64	
		Sink/Source	50 mA to 60 V (AC/DC)	
		Potential Free	Yes	
		Isolation	1000 V	
		Connector Type	ERNI 160-Pin	
EMX-7515	Digital Input	Channels	32	
		Logical High	2.5 V to 60 V	
		Logical Low	<2.5 V	
		Isolation	1000 V	
		Connector Type	ERNI 160-Pin	

ENVIRONMENTAL SPECIFICATIONS

Data Card Specifications			
Operating Environment			
Operating Temperature	0° C to +55 °C		
Relative Humidity, Non	10% to 90%		
Condensing			
Storage Environment			
Storage Temperature	-40°C to +80°C		
Relative Humidity, Non	5% to 95 %		
Condensing			
Altitude	3,000 m		
Pollution Degree	2		


SECTION 2

EMX-7510, 64-CHANNEL, DIGITAL I/O CARD

The EMX-7510 is a high-performance I/O module with eight ports of 8 bits (64 channels) each. Each 8-bit port may be configured as an Input or Output under program control.

In order to ease overall system cabling, all clamping diodes and open collector channels are pulled up internally, rather than on a per-channel basis.

Each channel can sink 300 mA, and includes built-in clamping diodes, making this module ideal for driving and sensing external devices such as relays.

FIGURE 2-1: EMX-7510

EMX-7510 Specifications

GENERAL SPECIFICATIO					
DATA INPUT CHARACTERIS	DATA INPUT CHARACTERISTICS				
V _{IN} (high)	>40% of Vclamp (Typical)				
V _{IN} (low)	< 16% of Vclamp (Typical)				
V _{IN} (max)	60 V				
DATA OUTPUT CHARACTER	RISTICS				
V _{OUT} (high)	> 2 V to 60 V				
V _{OUT} (low)	< 1.5 V @ 300 mA				
VOLTAGE RANGE					
Internal voltage source	3.3 V, 5.0 V, 12.0 V, and 24.0 V				
User	> 2 V up to 60 V				
MODES					
Immediate (Normal)	Inputs and outputs read and written via software control				
DATA INPUT CLOCK SOURC	CES				
	Internal clock, front panel input				
POWER CONSUMPTION					
3.3 V					
5 V					
12 V					

USING THE INSTRUMENT

Measurement Performance

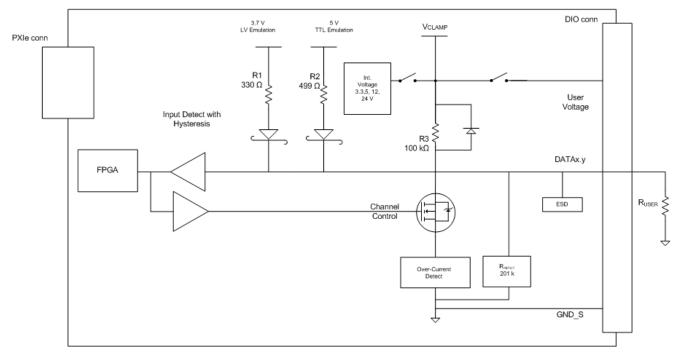
This section discusses tips and procedures that can help maximize the actual performance realized with the EMX-7510 and aid the user in avoiding some common pitfalls associated with making measurements.

Warm-up Time

As the EMX-7510 doesn't require calibration and there are no adjustments for the instrument to meet its published specifications, there is no warm up required.

Voltage Outputs

A channel output is pulled to the configured voltage through a pull-up resistor. The actual output that will be seen by the unit under test is defined by the standard voltage divider equation:


$$V_0 = V_{CLAMP} \left(\frac{R_2}{R_1 + R_2} \right)$$

Where,

 V_0 is the output voltage V_{CLAMP} is the user configured voltage R_1 is the internal pull-up resistor R_2 is the external load presented by the unit under test

In normal mode, R_1 is 100 k Ω . In TTL emulation mode, R_1 is 499 Ω and in LV emulation mode, R1 is 330 Ω . So the pull-up to V_{CLAMP} is much stronger. TTL emulation mode is available for the 3.3 V and 5 V voltage levels.

If voltages higher than those provided by the equation above are desired, the user can supply a voltage with an external power supply in conjunction with a low-value pull-up resistor to get closer to the user's V_{CLAMP} voltage. The 300 mA sink capability of the channel still must be observed.

Voltage Output			
Mode	Internal Supply	Pull-Up (R_X)	Open Circuit V ₀
Normal	24 V	$100 \mathrm{k}\Omega(R_3)$	~15.84 V
Normal	12 V	$100 \mathrm{k}\Omega(R_3)$	~7.92 V
Normal	5 V	$100 \mathrm{k}\Omega(R_3)$	~3.3 V
Normal	3.3 V	$100 \mathrm{k}\Omega(R_3)$	~2.47 V
TTL Emulation	5 V*	499 $\Omega(R_2)$	~4.64 V
LV Emulation	3.7 V*	$330 \Omega(R_1)$	~3.34 V
*For TTL and LV m	odes, there is approxim	ately a 0.35 V dro	p due to the Schottky diode, resulting in an
actual internal supply voltage of 4.65 V and 3.35V, respectively.			ely.
Mode	External Supply	Load	V _{O-USER}
Normal	V _{CLAMP}	R _{USER}	$V_{CLAMP}\left[\frac{R_{USER} \parallel R_{INPUT}}{100k\Omega + \left(R_{USER} \parallel R_{INPUT}\right)}\right]$

FIGURE 2-2: VOLTAGE OUTPUT BLOCK DIAGRAM

Connector Pin/Signal Assignment

The connector pins and their signal assignments are shown below**Error! Reference source not found.**. For mating connector and accessory information, please see the *EMX-75xx Accessories*.

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	GND_S	B1	GND_C	C1	GND_S	D1	EXT_GATE_ACQ	E1	EXT_GATE_GEN
A2	GND_S	B2	GND_S	C2	GND_S	D2	EXT_CLK	E2	GND_S
A3	DATA1.4	B3	GND_S	C3	DATA1.8	D3	GND_S	E3	DATA1.5
A4	DATA1.1	B4	GND_S	C4	DATA1.2	D4	GND_S	E4	DATA1.6
A5	DATA1.3	B5	GND_S	C5	DATA1.7	D5	GND_S	E5	DATA2.5
A6	DATA2.4	B6	DATA2.1	C6	DATA2.8	D6	GND_S	E6	DATA2.2
A7	GND_S	B7	GND_S	C7	GND_S	D7	DATA2.3	E7	GND_S
A8	GND_S	B8	GND_S	C8	GND_S	D8	GND_S	E8	DATA2.6
A9	DATA2.7	B9	USER_V2	C9	DATA3.8	D9	GND_S	E9	DATA3.5
A10	DATA3.4	B10	GND_S	C10	DATA3.1	D10	USER_V1	E10	GND_S
A11	DATA3.2	B11	GND_S	C11	DATA3.7	D11	GND_S	E11	DATA3.6
A12	DATA3.3	B12	GND_S	C12	DATA4.2	D12	GND_S	E12	DATA4.4
A13	GND_S	B13	USER_V4	C13	GND_S	D13	GND_S	E13	DATA4.5
A14	GND_S	B14	GND_S	C14	GND_S	D14	GND_S	E14	DATA4.8
A15	DATA4.1	B15	GND_S	C15	DATA4.7	D15	GND_S	E15	GND_S
A16	DATA4.3	B16	USER_V3	C16	DATA5.1	D16	GND_S	E16	GND_S
A17	DATA5.3	B17	GND_S	C17	DATA5.2	D17	USER_V6	E17	DATA4.6
A18	DATA5.8	B18	GND_S	C18	DATA5.4	D18	GND_S	E18	DATA5.5
A19	GND_S	B19	GND_S	C19	GND_S	D19	GND_S	E19	DATA5.7
A20	GND_S	B20	USER_V5	C20	GND_S	D20	GND_S	E20	DATA5.6
A21	DATA6.4	B21	GND_S	C21	DATA6.5	D21	GND_S	E21	GND_S
A22	DATA6.1	B22	GND_S	C22	DATA6.8	D22	GND_S	E22	GND_S
A23	DATA6.3	B23	GND_S	C23	DATA6.2	D23	GND_S	E23	DATA6.6
A24	DATA7.4	B24	USER_V7	C24	DATA7.1	D24	USER_V8	E24	DATA6.7
A25	GND_S	B25	GND_S	C25	GND_S	D25	GND_S	E25	DATA7.8
A26	GND_S	B26	GND_S	C26	GND_S	D26	GND_S	E26	DATA7.5
A27	DATA7.3	B27	GND_S	C27	DATA7.6	D27	GND_S	E27	GND_S
A28	DATA7.2	B28	GND_S	C28	DATA7.7	D28	GND_S	E28	GND_S
A29	DATA8.4	B29	GND_S	C29	DATA8.1	D29	GND_S	E29	DATA8.5
A30	DATA8.2	B30	GND_S	C30	DATA8.6	D30	GND_S	E30	DATA8.8
A31	GND_S	B31	GND_C	C31	GND_S	D31	GND_S	E31	GND_S
A32	DATA8.3	B32	GND_S	C32	DATA8.7	D32	GND_S	E32	GND_S

TABLE 2-1: EMX-7510 CONNECTOR PIN SIGNAL ASSIGNMENT

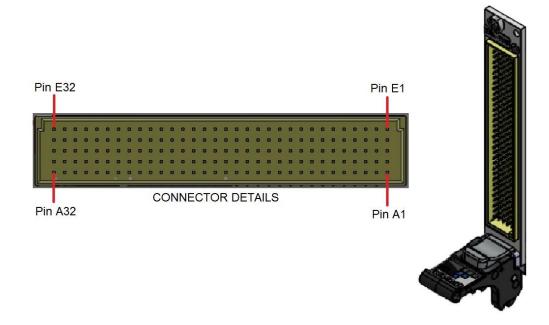


FIGURE 2-3: EMX-7510 FRONT PANEL DETAIL

EMX-7510-TB160SE Terminal Block

VTI offers a single-ended terminal block for the EMX-7510 (P/N: 70-0367-005). The terminal block simplifies cabling by providing screw-terminal blocks for user wiring. Signal pin mapping for the EMX-7510 can be seen in Table 2-2.

		a			G			G			Con
TB	C*1	Conn	TB	C*1	Conn	TB	C*1	Conn	TB	C*1	n D'a
Ref	Signal	Pin	Ref	Signal	Pin	Ref	Signal	Pin	Ref	Signal	Pin
T1	GND_S	E2	T41	DATA4.1	A15	T81	GND_S	C14	T121	DATA6.1	A22
T2	EXT_CLK	D2	T42	GND_S	A14	T82	GND_S	B14	T122	DATA6.3	A23
T3	DATA1.5	E3	T43	GND_S	A13	T83	DATA4.7	C15	T123	GND_S	A20
T4	GND_S	D3	T44	DATA3.3	A12	T84	GND_S	B15	T124	DATA5.8	A18
T5	DATA1.6	E4	T45	DATA3.4	A10	T85	DATA5.1	C16	T125	GND_S	A19
T6	GND_S	D4	T46	USER_V1	D10	T86	USER_V3	B16	T126	DATA4.3	A16
T7	DATA2.5	E5	T47	GND_S	E10	T87	DATA5.2	C17	T127	DATA5.3	A17
T8	GND_S	D5	T48	DATA3.7	C11	T88	GND_S	B17	T128	GND_S	D32
T9	DATA2.2	E6	T49	GND_S	B11	T89	DATA5.4	C18	T129	DATA8.8	E30
T10	GND_S	D6	T50	DATA3.2	A11	T90	GND_S	B18	T130	GND_D	D30
T11	GND_S	E7	T51	GND_S	B12	T91	GND_S	C19	T131	DATA8.5	E29
T12	DATA2.3	D7	T52	DATA4.2	C12	T92	GND_S	B19	T132	GND_S	D29
T13	DATA2.6	E8	T53	USER_V4	B13	T93	GND_S	C20	T133	GND_S	E31
T14	GND_S	D8	T54	GND_S	C13	T94	USER_V5	B20	T134	GND_S	D31
T15	DATA3.5	E9	T55	DATA2.7	A9	T95	DATA8.7	C32	T135	DATA8.6	C30
T16	GND_S	D9	T56	GND_S	A8	T96	EXT_GATE_GEN	E1	T136	GND_S	B30
T17	DATA1.8	C3	T57	GND_S	A7	T97	DATA7.5	E26	T137	GND_S	C31
T18	GND_S	B3	T58	DATA2.4	A6	T98	GND_S	D26	T138	GND_C	B31
T19	GND_S	C2	T59	DATA1.3	A5	T99	DATA6.7	E24	T139	GND_D	B29
T20	GND_S	B2	T60	DATA1.1	A4	T100	USER_V8	D24	T140	GND_S	C29
T21	DATA1.2	C4	T61	DATA1.4	A3	T101	GND_S	E27	T141	GND_S	B28
T22	GND_S	B4	T62	GND_S	A2	T102	GND_S	D27	T142	DATA7.7	C28
T23	DATA1.7	C5	T63	GND_S	B10	T103	GND_S	E28	T143	GND_S	C25
T24	GND_S	B5	T64	DATA3.1	C10	T104	GND_S	D28	T144	GND_S	B25
T25	DATA2.8	C6	T65	GND_S	E15	T105	DATA6.6	E23	T145	GND_S	B27
T26	DATA2.1	B6	T66	GND_S	D15	T106	GND_S	D23	T146	DATA7.6	C27

											Con
TB		Conn	TB		Conn	TB		Conn	TB		n
Ref	Signal	Pin	Ref	Signal	Pin	Ref	Signal	Pin	Ref	Signal	Pin
T27	GND_S	C7	T67	GND_S	E16	T107	GND_S	E22	T147	GND_S	B26
T28	GND_S	B7	T68	GND_S	D16	T108	GND_S	D22	T148	GND_S	C26
T29	GND_S	C8	T69	DATA4.6	E17	T109	GND_S	D25	T149	GND_S	A26
T30	GND_S	B8	T70	USER_V6	D17	T110	DATA7.8	E25	T150	DATA7.3	A27
T31	DATA3.8	C9	T71	DATA8.6	E18	T111	DATA5.6	E20	T151	DATA7.2	A28
T32	USER_V2	B9	T72	GND_S	D18	T112	GND_S	D20	T152	DATA8.4	A29
T33	DATA3.6	E11	T73	DATA5.7	E19	T113	DATA6.8	C22	T153	DATA8.2	A30
T34	GND_S	D11	T74	GND_S	D19	T114	GND_S	B22	T154	GND_S	A31
T35	GND_S	D12	T75	DATA6.5	C21	T115	DATA6.2	C23	T155	GND_S	E32
T36	DATA4.4	E12	T76	GND_S	B21	T116	GND_S	B23	T156	GND_C	B1
T37	GND_S	D13	T77	GND_D	D1	T117	DATA7.1	C24	T157	DATA8.3	A32
T38	DATA4.5	E13	T78	DATA3.5	A21	T118	USER_V7	B24	T158	GND_	A1
T39	GND_S	D14	T79	EXT_GATE_ACQ	D21	T119	DATA7.4	A24	T159	GND_S	B32
T40	DATA4.8	E14	T80	GND_S	E21	T120	GND_S	A25	T160	GND_S	C1

TABLE 2-2: EMX-7510 TO TB160SE TERMINAL BLOCK PIN AND SIGNAL MAPPING

THEORY OF OPERATION

This section provides an overview of how the EMX-7510 works. The figure below shows illustrates this process.

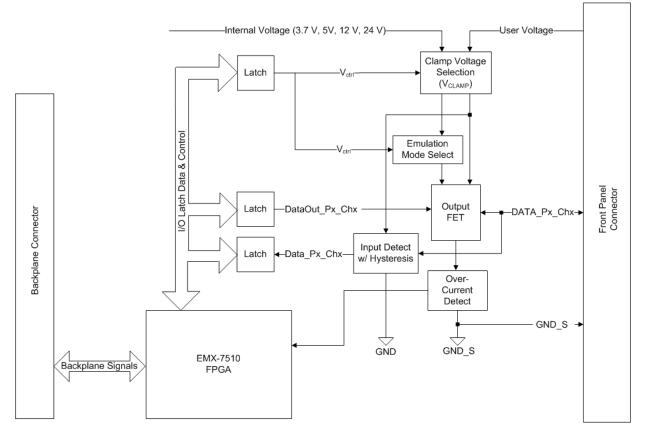


FIGURE 2-4: EMX-7510 BLOCK DIAGRAM

Overview

The EMX-7510 supports a static mode where user-driven software commands execute reading/writing data channels on a per port basis. Each port can be programmed for direction and polarity. The default direction is input and default polarity is normal. Ports also need a voltage reference before data can be read or written; this voltage is used for pulling up open drain data lines and setting reference voltage for threshold detection in input path. No voltage should be applied on data lines before voltage selection and during voltage configuration process. User can select a voltage from 3.3 V, 5 V, 12 V or 24 V provided on the module or supply a voltage through front panel connector, to be used as V_{CLAMP} . By default, no voltage is selected and data lines are floating. There is also an option of configuring a port's voltage setting as either TTL or Low Voltage emulation. In TTL emulation setting, open drain lines are pulled up to 5 V and have a sourcing capability of 4 mA, whereas in Low Voltage (LV) option the pull-up voltage is 3.3 V with 4 mA drive strength.

When doing read and writes, data written to a port set for output updates data on that port, data written to a port set for input does not have any effect. Data read from a port always reads current status of data pins (whether driven by card or by user).

When a port's direction is output, data is driven by the DIO on the corresponding channels and no user voltage should be applied on those channels. When direction is input, data lines are pulled up

to V_{CLAMP} using 100 k Ω resistor and user can drive their data on the channels with a V_{IN} range of zero to V_{CLAMP} .

TTL and LV emulation voltage selection is only applicable when port's direction is output. Input mode will not be allowed for emulation voltage.

Data in output register(s) of concerned port is reset (set to all F's) after reset and any operation that involves voltage configuration, as listed below:

- 1) When card is reset. All ports are affected.
- 2) A port's direction is changed when its voltage is set for TTL/LV emulation. Only concerned port is affected.
- 3) Port voltage configuration is done. Only concerned port is affected.

Data in output registers is not retained if direction is changed. So for example, when an output port that is driving AA on data lines is made input, all its channels are pulled up so that user data can be driven but when the direction is changed back to output, FF gets driven, given that polarity and voltage setting didn't change.

Polarity settings are applicable irrespective of direction. On output channels, changing the polarity flips the state of data lines and further writes are done according to polarity selection (for example, if polarity is configured as reversed then writing 1 to a channel writes a 0 to it and vice versa). Read back of data, whether driven by card when direction is output or driven by user when direction is input, also checks for polarity and if polarity is reversed, 1 is read as 0, otherwise as 1 and 0 is read as 1, otherwise as 0.

Configuration Section

This section of circuit is used to select reference voltage (V_{CLAMP}) for ports. Each port has a set of programmatically controlled switches that let the user select a voltage from 3.3 V, 5 V, 12 V, 24 V and User supplied voltage, which can be anywhere from 3.3 V to 60 V. In addition, LV and TTL emulation modes can be selected which use 3.3 V and 5 V as V_{CLAMP} respectively, and insert a low impedance pull-up resistor in the path to source 4 mA.

Output Section

The output section of each channel consists of an N-channel MOSFET, pull-up resistors and over current sense circuitry. When a 1 is driven on channel, the MOSFET is turned off and data line is pulled-up to V_{CLAMP} using appropriate pull-up resistor (330 Ω for LV emulation, 500 Ω for TTL emulation and 100 k Ω otherwise). The rising voltage level at data channel exhibits RC charging with a rise time of approximately 70 μ s with 100 k Ω pull-up resistor and about 600 ns with low impedance pull-up in TTL and LV voltage configurations. When a 0 is driven on channel, the MOSFET is turned on and data line is connected to ground via a current sense resistor of 0.3 Ω . The falling edge is much sharper with a maximum fall time of 300 ns approximately. When the port is set as input, the data lines are pulled up using 100 k Ω resistor. Please refer to electrical characteristics for output voltage levels with different load resistance.

The load resistor and pull-up resistor form a voltage divider of V_{CLAMP} and determine output voltage, thus output voltage decreases with decreasing load resistance. The minimum load resistance that can be connected on channels is 500 Ω for LV emulation, 750 Ω for TTL emulation and 150 k Ω otherwise.

The data lines have a current sinking capacity of 300 mA. If the current through MOSFET increases above limited value, the over current protection circuit turns off all FETs in the concerned port. The over current condition must last for greater than 12.8 μ s before over current protection circuit is activated. This is done to prevent false over current events due to transients. It takes approximately 20 μ s from first occurrence of the over current event before the FETs are truned off. The over current circuit will activate with 340 mA hold current and 475 mA trip

current, where hold current is the maximum current circuit will allow without tripping and trip current is the minimum current required to trip the circuit. The absolute maximum limit on sinking current is 500 mA. Staying within these limits is user's responsibility. Over current readings from ports will be latched and can be read by user. When they reset over current condition then port will be enabled and data last written to port will be applied on channels.

Input Section

The input section converts the high or low voltage reading on the data channels to 1 or 0 that can be read by the user. The port's V_{CLAMP} voltage is used as a reference for threshold detection. If voltage on data line is greater than 40% (range spreads to 37% to 42% across different voltage levels) of port's V_{CLAMP} voltage, 1 is read and if voltage on data line is less than 13% (10% to15% range) of port's V_{CLAMP} voltage, 0 is read. Hysteresis loop is implemented on input comparison meaning that on rising voltage, level has to cross higher threshold (VIH) to record a 1 and on falling voltage, level has to cross lower threshold (VIL) to record a 0. In between VIH and VIL the digital state of data channel reading stays the same. Please refer to the recommended operating conditions for input threshold values.

The input section also has a fly-back protection diode. The port's reference voltage VCLAMP is routed to the cathode of a fly-back protection diode, whose anode is then connected to the associated port's data line. Every data line has a diode installed to suppress transients in case of voltage overshooting. The current through diode must be limited as indicated in absolute maximum ratings.

TTL/LV Emulation Sourcing Current Typical connection

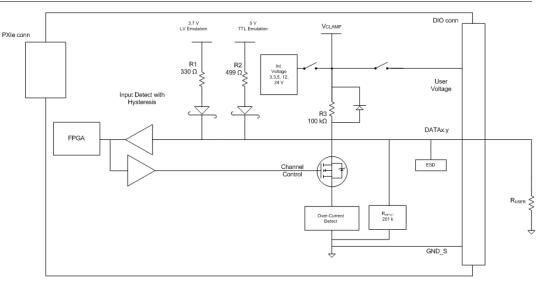


FIGURE 2-5: TTL/LV EMULATION SOURCING CURRENT TYPICAL CONNECTION

Sinking Current Typical connection

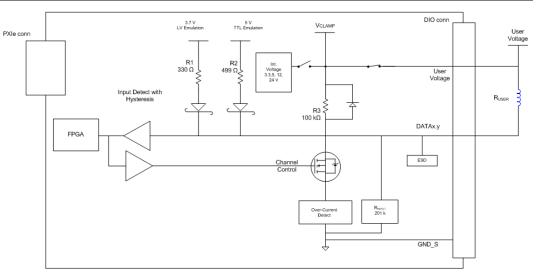


FIGURE 2-6: SINKING CURRENT TYPICAL CONNECTION

EMX-7511, 64-CHANNEL, DIGITAL I/O TTL CARD

The EMX-7511 is a high-performance I/O module with eight ports of 8 bits (64 channels) each with standard TTL voltage levels. Each 8-bit port may be configured as an Input or Output under program control.

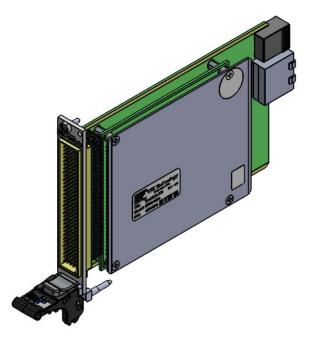


FIGURE 2-7: EMX-7511

BLOCK DIAGRAM

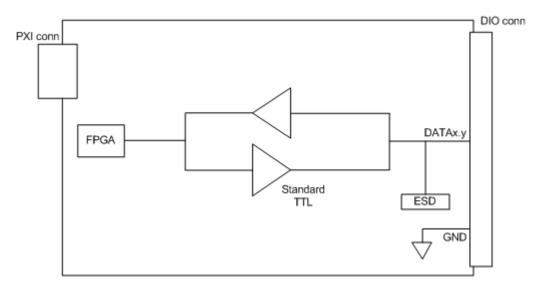
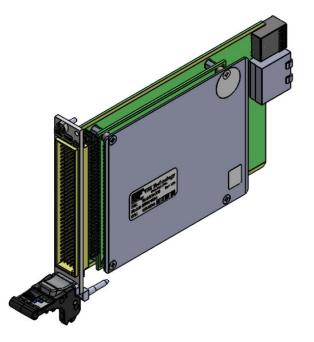


FIGURE 2-8: EMX-7511 BLOCK DIAGRAM

Connector Pin/Signal Assignment

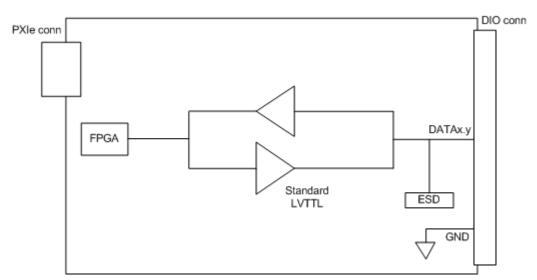
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	GND	B1	GND_C	C1	GND	D1	EXT_GATE_ACQ	E1	EXT_GATE_GEN
A2	GND	B2	GND	C2	GND	D2	EXT_CLK	E2	GND
A3	DATA1.4	B3	GND	C3	DATA1.8	D3	GND	E3	DATA1.5
A4	DATA1.1	B4	GND	C4	DATA1.2	D4	GND	E4	DATA1.6
A5	DATA1.3	B5	GND	C5	DATA1.7	D5	GND	E5	DATA2.5
A6	DATA2.4	B6	DATA2.1	C6	DATA2.8	D6	GND	E6	DATA2.2
A7	GND	B7	GND	C7	GND	D7	DATA2.3	E7	GND
A8	GND	B8	GND	C8	GND	D8	GND	E8	DATA2.6
A9	DATA2.7	B9		C9	DATA3.8	D9	GND	E9	DATA3.5
A10	DATA3.4	B10	GND	C10	DATA3.1	D10		E10	GND
A11	DATA3.2	B11	GND	C11	DATA3.7	D11	GND	E11	DATA3.6
A12	DATA3.3	B12	GND	C12	DATA4.2	D12	GND	E12	DATA4.4
A13	GND	B13		C13	GND	D13	GND	E13	DATA4.5
A14	GND	B14	GND	C14	GND	D14	GND	E14	DATA4.8
A15	DATA4.1	B15	GND	C15	DATA4.7	D15	GND	E15	GND
A16	DATA4.3	B16		C16	DATA5.1	D16	GND	E16	GND
A17	DATA5.3	B17	GND	C17	DATA5.2	D17		E17	DATA4.6
A18	DATA5.8	B18	GND	C18	DATA5.4	D18	GND	E18	DATA5.5
A19	GND	B19	GND	C19	GND	D19	GND	E19	DATA5.7
A20	GND	B20		C20	GND	D20	GND	E20	DATA5.6
A21	DATA6.4	B21	GND	C21	DATA6.5	D21	GND	E21	GND
A22	DATA6.1	B22	GND	C22	DATA6.8	D22	GND	E22	GND
A23	DATA6.3	B23	GND	C23	DATA6.2	D23	GND	E23	DATA6.6
A24	DATA7.4	B24		C24	DATA7.1	D24		E24	DATA6.7
A25	GND	B25	GND	C25	GND	D25	GND	E25	DATA7.8
A26	GND	B26	GND	C26	GND	D26	GND	E26	DATA7.5
A27	DATA7.3	B27	GND	C27	DATA7.6	D27	GND	E27	GND
A28	DATA7.2	B28	GND	C28	DATA7.7	D28	GND	E28	GND
A29	DATA8.4	B29	GND	C29	DATA8.1	D29	GND	E29	DATA8.5
A30	DATA8.2	B30	GND	C30	DATA8.6	D30	GND	E30	DATA8.8
A31	GND	B31	GND_C	C31	GND	D31	GND	E31	GND
A32	DATA8.3	B32	GND	C32	DATA8.7	D32	GND	E32	GND

The connector pins and their signal assignments are shown below**Error! Reference source not found.** For mating connector and accessory information, please see the *EMX-75xx Accessories*.


TABLE 2-3: EMX-7511 CONNECTOR PIN SIGNAL ASSIGNMENT

EMX-7511 SPECIFICATIONS

GENERAL SPECIFICATIONS								
DATA INPUT OUTPUT CHARACTERISTICS								
Channels	64 (Eight 8-Bit Ports)							
Logical Level	Standard TTL							
POWER CONSUMPTION								
3.3 V								
5 V								
12 V								


EMX-7512, 64-CHANNEL, DIGITAL I/O LV TTL CARD

The EMX-7512 is a high-performance I/O module with eight ports of 8 bits (64 channels) each with standard LV TTL voltage levels. Each 8-bit port may be configured as an Input or Output under program control.

FIGURE 2-9: EMX-7512

BLOCK DIAGRAM

FIGURE 2-10: EMX-7512 BLOCK DIAGRAM

Connector Pin/Signal Assignment

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	GND	B1	GND_C	C1	GND	D1	EXT_GATE_ACQ	E1	EXT_GATE_GEN
A2	GND	B2	GND	C2	GND	D2	EXT_CLK	E2	GND
A3	DATA1.4	B3	GND	C3	DATA1.8	D3	GND	E3	DATA1.5
A4	DATA1.1	B4	GND	C4	DATA1.2	D4	GND	E4	DATA1.6
A5	DATA1.3	B5	GND	C5	DATA1.7	D5	GND	E5	DATA2.5
A6	DATA2.4	B6	DATA2.1	C6	DATA2.8	D6	GND	E6	DATA2.2
A7	GND	B7	GND	C7	GND	D7	DATA2.3	E7	GND
A8	GND	B8	GND	C8	GND	D8	GND	E8	DATA2.6
A9	DATA2.7	B9		C9	DATA3.8	D9	GND	E9	DATA3.5
A10	DATA3.4	B10	GND	C10	DATA3.1	D10		E10	GND
A11	DATA3.2	B11	GND	C11	DATA3.7	D11	GND	E11	DATA3.6
A12	DATA3.3	B12	GND	C12	DATA4.2	D12	GND	E12	DATA4.4
A13	GND	B13		C13	GND	D13	GND	E13	DATA4.5
A14	GND	B14	GND	C14	GND	D14	GND	E14	DATA4.8
A15	DATA4.1	B15	GND	C15	DATA4.7	D15	GND	E15	GND
A16	DATA4.3	B16		C16	DATA5.1	D16	GND	E16	GND
A17	DATA5.3	B17	GND	C17	DATA5.2	D17		E17	DATA4.6
A18	DATA5.8	B18	GND	C18	DATA5.4	D18	GND	E18	DATA5.5
A19	GND	B19	GND	C19	GND	D19	GND	E19	DATA5.7
A20	GND	B20		C20	GND	D20	GND	E20	DATA5.6
A21	DATA6.4	B21	GND	C21	DATA6.5	D21	GND	E21	GND
A22	DATA6.1	B22	GND	C22	DATA6.8	D22	GND	E22	GND
A23	DATA6.3	B23	GND	C23	DATA6.2	D23	GND	E23	DATA6.6
A24	DATA7.4	B24		C24	DATA7.1	D24		E24	DATA6.7
A25	GND	B25	GND	C25	GND	D25	GND	E25	DATA7.8
A26	GND	B26	GND	C26	GND	D26	GND	E26	DATA7.5
A27	DATA7.3	B27	GND	C27	DATA7.6	D27	GND	E27	GND
A28	DATA7.2	B28	GND	C28	DATA7.7	D28	GND	E28	GND
A29	DATA8.4	B29	GND	C29	DATA8.1	D29	GND	E29	DATA8.5
A30	DATA8.2	B30	GND	C30	DATA8.6	D30	GND	E30	DATA8.8
A31	GND	B31	GND_C	C31	GND	D31	GND	E31	GND
A32	DATA8.3	B32	GND	C32	DATA8.7	D32	GND	E32	GND

The connector pins and their signal assignments are shown below**Error! Reference source not found.** For mating connector and accessory information, please see the *EMX-75xx Accessories*.

TABLE 2-4: EMX-7512 CONNECTOR PIN SIGNAL ASSIGNMENT

EMX-7512 SPECIFICATIONS

GENERAL SPECIFICATIONS								
DATA INPUT OUTPUT CHARACTERISTICS								
Channels	64 (Eight 8-Bit Ports)							
Logical Level	Standard LV TTL							
POWER CONSUMPTION								
3.3 V								
5 V								
12 V								

EMX-7513, 32 DI, 32DO-CHANNEL, DIGITAL I/O CARD

The EMX-7513 is a high-performance module with four ports of 8 bits input channels (32 channels) and four ports of 8 bits of Output channels (32 channels).

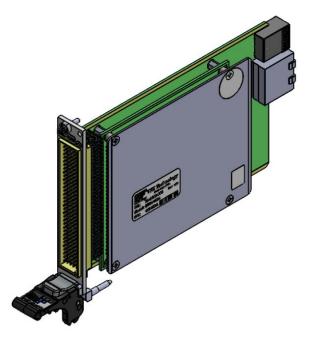
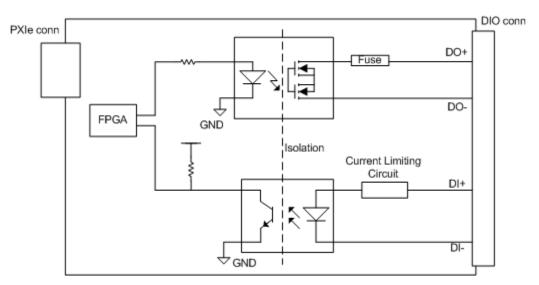
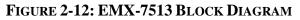




FIGURE 2-11: EMX-7513

BLOCK DIAGRAM

Connector Pin/Signal Assignment

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	GND_ISO	B1	VCC5V_ISO	C1	EXT_CLK-	D1	EXT_GATE_ACQ-	E1	EXT_GATE_GEN-
A2	GND_ISO	B2	VCC5V_ISO	C2	EXT_CLK+	D2	EXT_GATE_ACQ+	E2	EXT_GATE_GEN-
A3		B3		C3	DI_1.5-	D3		E3	DI_2.1-
A4		B4		C4	DI_1.5+	D4		E4	DI_2.1+
A5	DI_1.1-	B5	DI_1.2-	C5	DI_1.6-	D5	DI_1.7-	E5	DI_2.2-
A6	DI_1.1+	B6	DI_1.2+	C6	DI_1.6+	D6	DI_1.7+	E6	DI_2.2+
A7	DI_2.3-	B7	DI_1.3-	C7	DI_2.7-	D7	DI_1.8-	E7	DI_3.3-
A8	DI_2.3+	B8	DI_1.3+	C8	DI_2.7+	D8	DI_1.8+	E8	DI_3.3+
A9	DI_2.4-	B9	DI_1.4-	C9	DI_2.8-	D9	DI_3.1-	E9	DI_3.4-
A10	DI_2.4+	B10	DI_1.4+	C10	DI_2.8+	D10	DI_3.1+	E10	DI_3.4+
A11	DI_3.5-	B11	DI_2.5-	C11	DI_4.1-	D11	DI_3.2-	E11	DI_4.5-
A12	DI_3.5+	B12	DI_2.5+	C12	DI_4.1+	D12	DI_3.2+	E12	DI_4.5+
A13	DI_3.6-	B13	DI_2.6-	C13	DI_4.2-	D13	DI_4.3-	E13	DI_4.6-
A14	DI_3.6+	B14	DI_2.6+	C14	DI_4.2+	D14	DI_4.3+	E14	DI_4.6+
A15	DI_4.7-	B15	DI_3.7-	C15	DO_1.3-	D15	DI_4.4-	E15	DO_1.7-
A16	DI_4.7+	B16	DI_3.7+	C16	DO_1.3+	D16	DI_4.4+	E16	DO_1.7+
A17	DI_4.8-	B17	DI_3.8-	C17	DO_1.4-	D17	DO_1.5-	E17	DO_1.8-
A18	DI_4.8+	B18	DI_3.8+	C18	DO_1.4+	D18	DO_1.5+	E18	DO_1.8+
A19	DO_2.1-	B19	DO_1.1-	C19	DO_2.5-	D19	DO_1.6-	E19	DO_3.1-
A20	DO_2.1+	B20	DO_1.1+	C20	DO_2.5+	D20	DO_1.6+	E20	DO_3.1+
A21	DO_2.2-	B21	DO_1.2-	C21	DO_2.6-	D21	DO_2.7-	E21	DO_3.2-
A22	DO_2.2+	B22	DO_1.2+	C22	DO_2.6+	D22	DO_2.7+	E22	DO_3.2+
A23	DO_3.3-	B23	DO_2.3-	C23	DO_3.7-	D23	DO_2.8-	E23	
A24	DO_3.3+	B24	DO_2.3+	C24	DO_3.7+	D24	DO_2.8+	E24	
A25	DO_3.4-	B25	DO_2.4-	C25	DO_3.8-	D25	DO_4.1-	E25	
A26	DO_3.4+	B26	DO_2.4+	C26	DO_3.8+	D26	DO_4.1+	E26	
A27	DO_3.6-	B27	DO_3.5-	C27	DO_4.3-	D27		E27	
A28	DO_3.6+	B28	DO_3.5+	C28	DO_4.3+	D28		E28	
A29	DO_4.4-	B29	DO_4.2-	C29	DO_4.5-	D29		E29	DO_4.6-
A30	DO_4.4+	B30	DO_4.2+	C30	DO_4.5+	D30		E30	DO_4.6+
A31	DO_4.7-	B31		C31	DO_4.8-	D31		E31	
A32	DO_4.7+	B32		C32	DO_4.8+	D32		E32	

The connector pins and their signal assignments are shown below**Error! Reference source not found.** For mating connector and accessory information, please see the *EMX-75xx Accessories*.

TABLE 2-5: EMX-7513 CONNECTOR PIN SIGNAL ASSIGNMENT

EMX-7513 SPECIFICATIONS

GENERAL SPECIFICATIONS										
DATA INPUT CHARACT	DATA INPUT CHARACTERISTICS									
Logical High 2.5 V to 60 V										
Logical Low	< 2.5									
Isolation	1000 V									
DATA OUTPUT CHARA	CTERISTICS									
Sink/Source	60 V @ 50 mA (AC/DC)									
Potential free	Yes									
Isolation	1000 V									
POWER CONSUMPTION										
3.3 V										
5 V										
12 V										

EMX-7514, 64-CHANNEL, DIGITAL OUTPUT CARD

The EMX-7514 is a high-performance output module with eight ports of 8 bits (64 channels) each.

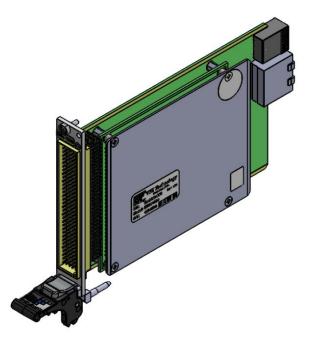
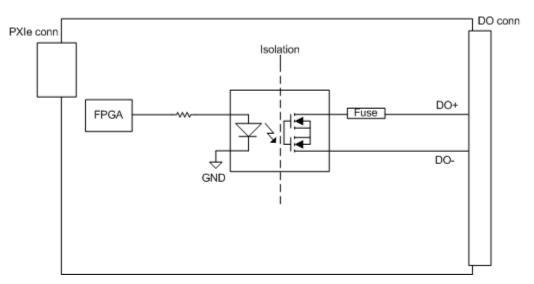



FIGURE 2-13: EMX-7514

BLOCK DIAGRAM

FIGURE 2-14: EMX-7514 BLOCK DIAGRAM

Connector Pin/Signal Assignment

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	URS_SHLD	B1		C1		D1	EXT_GATE_	E1	EXT_GATE_
	_PLANE				EXT_CLK		ACQ-		GEN-
A2		B2		C2		D2	EXT_GATE_	E2	EXT_GATE_
					EXT_CLK		ACQ+		GEN+
A3		B3		C3	DO_1.5	D3		E3	DO_2.1-
A4		B4		C4	DO_1.5	D4		E4	DO_2.1+
A5	DO_1.1-	B5	DO_1.2-	C5	DO_1.6	D5	DO_1.7-	E5	DO_2.2-
A6	DO_1.1+	B6	DO_1.2+	C6	DO_1.6	D6	DO_1.7+	E6	DO_2.2+
A7	DO_2.3-	B7	DO_1.3-	C7	DO_2.7	D7	DO_1.8-	E7	DO_3.3-
A8	DO_2.3+	B8	DO_1.3+	C8	DO_2.7	D8	DO_1.8+	E8	DO_3.3+
A9	DO_2.4-	B9	DO_1.4-	C9	DO_2.8	D9	DO_3.1-	E9	DO_3.4-
A10	DO_2.4+	B10	DO_1.4+	C10	DO_2.8	D10	DO_3.1+	E10	DO_3.4+
A11	DO_3.5-	B11	DO_2.5-	C11	DO_4.1	D11	DO_3.2-	E11	DO_4.5-
A12	DO_3.5+	B12	DO_2.5+	C12	DO_4.1	D12	DO_3.2+	E12	DO_4.5+
A13	DO_3.6-	B13	DO_2.6-	C13	DO_4.2	D13	DO_4.3-	E13	DO_4.6-
A14	DO_3.6+	B14	DO_2.6+	C14	DO_4.2	D14	DO_4.3+	E14	DO_4.6+
A15	DO_4.7-	B15	DO_3.7-	C15	DO_5.3	D15	DO_4.4-	E15	DO_5.7-
A16	DO_4.7+	B16	DO_3.7+	C16	DO_5.3	D16	DO_4.4+	E16	DO_5.7+
A17	DO_4.8-	B17	DO_3.8-	C17	DO_5.4	D17	DO_5.5-	E17	DO_5.8-
A18	DO_4.8+	B18	DO_3.8+	C18	DO_5.4	D18	DO_5.5+	E18	DO_5.8+
A19	DO_6.1-	B19	DO_5.1-	C19	DO_6.5	D19	DO_5.6-	E19	DO_7.1-
A20	DO_6.1+	B20	DO_5.1+	C20	DO_6.5	D20	DO_5.6+	E20	DO_7.1+
A21	DO_6.2-	B21	DO_5.2-	C21	DO_6.6	D21	DO_6.7-	E21	DO_7.2-
A22	DO_6.2+	B22	DO_5.2+	C22	DO_6.6	D22	DO_6.7+	E22	DO_7.2+
A23	DO_7.3-	B23	DO_6.3-	C23	DO_7.7	D23	DO_6.8-	E23	
A24	DO_7.3+	B24	DO_6.3+	C24	DO_7.7	D24	DO_6.8+	E24	
A25	DO_7.4-	B25	DO_6.4-	C25	DO_7.8	D25	DO_8.1-	E25	
A26	DO_7.4+	B26	DO_6.4+	C26	DO_7.8	D26	DO_8.1+	E26	
A27	DO_7.6-	B27	DO_7.5-	C27	DO_8.3	D27		E27	
A28	DO_7.6+	B28	DO_7.5+	C28	DO_8.3	D28		E28	
A29	DO_8.4-	B29	DO_8.2-	C29	DO_8.5	D29		E29	
A30	DO_8.4+	B30	DO_8.2+	C30	DO_8.5	D30		E30	
A31	DO_8.8-	B31		C31	DO_8.7	D31		E31	
A32	DO_8.8+	B32		C32	DO_8.7	D32		E32	

The connector pins and their signal assignments are shown below**Error! Reference source not found.** For mating connector and accessory information, please see the *EMX-75xx Accessories*.

TABLE 2-6: EMX-7514 CONNECTOR PIN SIGNAL ASSIGNMENT

EMX-7514 SPECIFICATIONS

GENERAL SPECIFIC	GENERAL SPECIFICATIONS								
DATA OUTPUT CHARA	DATA OUTPUT CHARACTERISTICS								
Sink/Source	60 V @ 50 mA (AC/DC)								
Potential free	Yes								
Isolation	1000 V								
POWER CONSUMPTION									
3.3 V									
5 V									
12 V									

EMX-7515, 64-CHANNEL, DIGITAL INPUT CARD

The EMX-7515 is a high-performance input module with eight ports of 8 bits (64 channels) each.

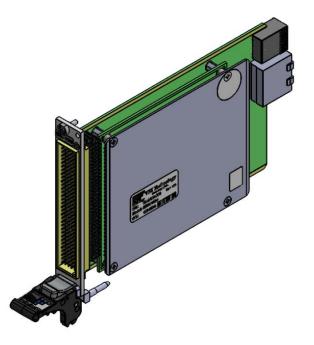
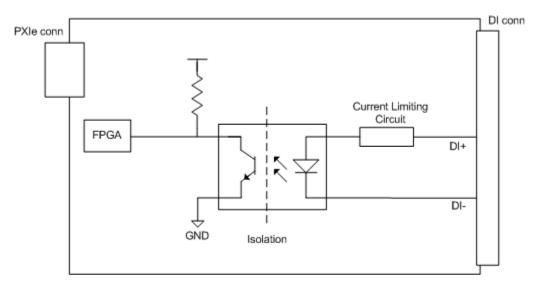



FIGURE 2-15: EMX-7515

BLOCK DIAGRAM

FIGURE 2-16: EMX-7515 BLOCK DIAGRAM

Connector Pin/Signal Assignment

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	USR_SHLD	B1		C1	EXT_CL	D1	EXT_GATE)_AC	E1	EXT_GATE)_GEN
	_PLANE				K-		Q-		-
A2		B2		C2	EXT_CL	D2	EXT_GATE)_AC	E2	EXT_GATE)_GEN
					K+		Q+		+
A3		B3		C3	DI_1.5-	D3		E3	DI_2.1-
A4		B4		C4	DI_1.5+	D4		E4	DI_2.1+
A5	DI_1.1-	B5	DI_1.2-	C5	DI_1.6-	D5	DI_1.7-	E5	DI_2.2-
A6	DI_1.1+	B6	DI_1.2+	C6	DI_1.6+	D6	DI_1.7+	E6	DI_2.2+
A7	DI_2.3-	B7	DI_1.3-	C7	DI_2.7-	D7	DI_1.8-	E7	DI_3.3-
A8	DI_2.3+	B8	DI_1.3+	C8	DI_2.7+	D8	DI_1.8+	E8	DI_3.3+
A9	DI_2.4-	B9	DI_1.4-	C9	DI_2.8-	D9	DI_3.1-	E9	DI_3.4-
A10	DI_2.4+	B10	DI_1.4+	C10	DI_2.8+	D10	DI_3.1+	E10	DI_3.4+
A11	DI_3.5-	B11	DI_2.5-	C11	DI_4.1-	D11	DI_3.2-	E11	DI_4.5-
A12	DI_3.5+	B12	DI_2.5+	C12	DI_4.1+	D12	DI_3.2+	E12	DI_4.5+
A13	DI_3.6-	B13	DI_2.6-	C13	DI_4.2-	D13	DI_4.3-	E13	DI_4.6-
A14	DI_3.6+	B14	DI_2.6+	C14	DI_4.2+	D14	DI_4.3+	E14	DI_4.6+
A15	DI_4.7-	B15	DI_3.7-	C15	DI_5.3-	D15	DI_4.4-	E15	DI_5.7-
A16	DI_4.7+	B16	DI_3.7+	C16	DI_5.3+	D16	DI_4.4+	E16	DI_5.7+
A17	DI_4.8-	B17	DI_3.8-	C17	DI_5.4-	D17	DI_5.5-	E17	DI_5.8-
A18	DI_4.8+	B18	DI_3.8+	C18	DI_5.4+	D18	DI_5.5+	E18	DI_5.8+
A19	DI_6.1-	B19	DI_5.1-	C19	DI_6.5-	D19	DI_5.6-	E19	DI_7.1-
A20	DI_6.1+	B20	DI_5.1+	C20	DI_6.5+	D20	DI_5.6+	E20	DI_7.1+
A21	DI_6.2-	B21	DI_5.2-	C21	DI_6.6-	D21	DI_6.7-	E21	DI_7.2-
A22	DI_6.2+	B22	DI_5.2+	C22	DI_6.6+	D22	DI_6.7+	E22	DI_7.2+
A23	DI_7.3-	B23	DI_6.3-	C23	DI_7.7-	D23	DI_6.8-	E23	
A24	DI_7.3+	B24	DI_6.3+	C24	DI_7.7+	D24	DI_6.8+	E24	
A25	DI_7.4-	B25	DI_6.4-	C25	DI_7.8-	D25	DI_8.1-	E25	
A26	DI_7.4+	B26	DI_6.4+	C26	DI_7.8+	D26	DI_8.1+	E26	
A27	DI_7.6-	B27	DI_7.5-	C27	DI_8.3-	D27		E27	
A28	DI_7.6+	B28	DI_7.5+	C28	DI_8.3+	D28		E28	
A29	DI_8.4-	B29	DI_8.2-	C29	DI_8.5-	D29		E29	DI_8.6-
A30	DI_8.4+	B30	DI_8.2+	C30	DI_8.5+	D30		E30	DI_8.6+
A31	DI_8.8-	B31		C31	DI_8.7-	D31		E31	
A32	DI_8.8+	B32		C32	DI_8.7+	D32		E32	

The connector pins and their signal assignments are shown below**Error! Reference source not found.** For mating connector and accessory information, please see the *EMX-75xx Accessories*.

TABLE 2-7: EMX-7515 CONNECTOR PIN SIGNAL ASSIGNMENT

EMX-7515 SPECIFICATIONS

GENERAL SPECIFICATIONS DATA INPUT CHARACTERISTICS		
Logical Low	< 2.5 V	
Isolation	1000 V	
POWER CONSUMPTIO	N	
3.3 V		
5 V		
12 V		

SECTION 3

SOFTWARE INSTALLATION

The fastest way to begin controlling an EMX-75xx card is to discover the EMX-2500 chassis in which the card can be plugged. This can be found using the LXI Discovery Tool utility (a free tool available from LXI Consortium). For more information, refer to: http://lxistandard.org/Resources/LXIDiscoveryTool.aspx

The **LXI Discovery Tool** searches for all LXI Devices on the LAN Subnet. It uses mDNS and VXI-11 protocols to detect the LXI Instruments. The mDNS service additionally has some dependency on "Apple Bonjour Print Services" and hence the user has to install this service in the system to perform discovery mechanism. However, it is not mandatory to install this service, since LXI devices use various other protocols and services for discovery.

DRIVER INSTALLATION

VTI Instruments provides two types of drivers for this instrument. For Windows there is an IVI driver, based on the industry standard IVI driver architecture specifications. The IVI driver exposes both IVI-COM and IVI-C interface APIs. The IVI-COM interface can be used from any programming language that supports Microsoft COM (Component Object Model). For Linux, there is a driver that provides a C++ API. Both Windows and Linux drivers have a consistent API design so that the application software developed for one can be easily migrated to the other. The drivers are compatible with both 32-bit and 64-bit operating systems. In general, the API descriptions in this document apply to both the Windows and Linux drivers unless otherwise specified.

To control the EMX-75XX series card programmatically (via a user generated program or through tools such as Agilent VEE®, NI LabVIEW®, Mathworks Matlab®, etc.), two additional components must be installed: the IVI Shared Components library (for Windows OS only) or the VTI Common Library (for Linux OS only) and the provided VTI Instruments driver. For 32-bit Windows OS, install the 32-bit driver. For Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit), the 64-bit driver installer includes both 64-bit and 32-bit compatible drivers. These drivers are available for free download on the VTI Instruments web portal (www.vtiinstruments.com), in the respective product page, under download tab. The following sections describe installing the required software.

IVI Shared Components Installation (Windows Only)

If this component was installed during a previous LXI instrument installation, please proceed to <u>Instrument Driver Installation</u>. First, close all other open programs, leaving only Windows Explorer open. Navigate to the <CD-ROM Drive>:\EMX Platform Requisites directory on the CD and run the IVISharedComponentsX.X.X.exe program. Next, follow the on-screen instructions. Do not proceed to the next step until this installation completes successfully. If instructed to reboot the PC, it will be necessary to do so at that time. Alternatively, the latest IVI shared components can be downloaded and installed from IVI Foundation Web page, www.ivifoundation.org.

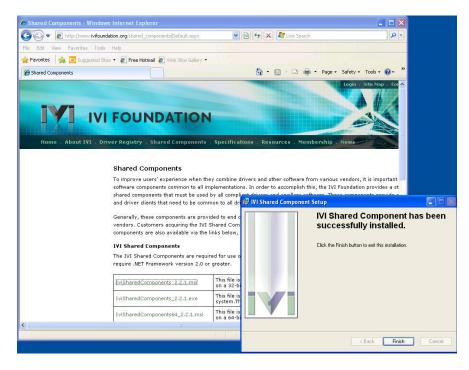


FIGURE 3-1: IVI SHARED COMPONENT INSTALLATION

Instrument Driver Installation

If the VTEXDio instrument driver was installed previously on the host PC, you may skip this step of the installation process, and proceed to <u>Platform/LXISync Instrument Driver Installation</u>. The previously installed driver may need to be updated to the most recently released version to support the EMX-7510. To install the VTEXDio instrument driver, navigate *to* <CD-ROM Drive>:\Drivers\LXI Drivers\EMX Series, on the CD, open the appropriate zip file in this directory, and then run the .msi installer. Alternately the drivers are available for free download from VTI Instruments online portal (<u>www.vtiinstruments.com</u>) under the specific product's download page.

FIGURE 3-2: INSTRUMENT DRIVER INSTALLATION

The Linux driver (32-bit and 64-bit) is located under <CD-ROM Drive>:\Drivers\Linux Drivers\Linux EMX Series. Open the appropriate zip file in this directory and then run the RPM Installer. Alternately the instrument drivers for Linux OS are also available for free download from VTI Instrument website, www.vtiinstruments.com

PROGRAMMING THE INSTRUMENT

This section provides programming examples for the EMX-75xx series. Additional information can be found in the driver help file. If the instrument will be used on a Linux system, a .chm viewer must be installed on the host PC (examples of these programs can be found at the following URL: http://www.linux.com/news/software/applications/8209-chm-viewers-for-linux.)

NOTE Programming examples are installed with the IVI Driver – DIO, typically located in the "<HDD Designation>\Program Files\IVI Foundation\IVI\Drivers\VTEXDIO\Examples" folder.

Related Software Components

IVI-COM Driver IVI-C Driver LabView Driver (Currently this is not available) Linux C++ Driver (Currently this is not available)

USING THE DRIVER

The EMX-75xx series may be used in a variety of environments including: Visual Basic, C#, C++, LabView. VTI instruments provides a IVI-C and IVI-COM compliant driver as well as a shared object that can be used on Linux systems that comply with the Linux Standard Base (Version 3.1).

Here is how to use the driver in each environment:

```
4) Visual Studio C++
  #import "IviDriverTypeLib.dll" no_namespace
  #import "VTEXDIO.dll" no namespace
```

5) C#

Add a reference to VTEXDIO.dll in the project. Include the following at the top of any code file that will access the driver: using VTI.VTEXDIO.Interop;

- 6) **C/C++ on Windows** Link against VTEXDIO.lib and include VTEXDIO.h in the file.
- 7) C++ on Linux

Link against /opt/vti/lib/libdio.so and include all the headers in /opt/vti/include in the source file.

8) LabView

Copy the driver package to the <Labview>/instr.lib directory and access all relevant VIs

USING THE EMX-75XX SERIES

INITIALIZING\CLOSING THE INSTRUMENT

The base interface of the EMX-75xx IVI driver, VTEXDIO (LibDIO on Linux), is used to open and close connections to the instrument as well as containing pointers to all other interfaces to access the functionality of the instrument.

Initialization

Prior to using the EMX-75xx, an instrument driver connection must be made to the EMX-75xx. Once a connection is made using the Initialize call, the user can execute their test code. Before the program exits, the user should release the resources using the Close call. Users familiar with other VTI Instrument Drivers for the EMX series should find this driver is very similar to ones they have used before.

C++

```
#import "IviDriverTypeLib.dll" no_namespace
#import "VTEXDio.dll" no_namespace
int main()
{
        //Windows driver creation
        ::CoInitialize(NULL); // start COM layer
        try
        {
                IVTEXDIOPtr Dio ( uuidof(VTEXDIO));
                /*We chose to give this driver an empty options string. If you have more
                than one DIO card in your chassis, you will have to give it options such
as a slot number. This is because the DIO driver does not support more
                than one card per driver instance. Note also that we set the reset flag
                so that we can get a clean start witht he unit */
                Dio->Initialize("TCPIP::10.20.1.5::INSTR", VARIANT_TRUE, VARIANT_TRUE,
                "");
                dio->Close();
                ::CoUninitialize();
        }
```

Option Strings

The VTEX drivers provide option strings that can be used when Initializing an instrument. The option string values exist to change the behavior of the driver. The following options strings are available on VTI IVI drivers:

- **Simulate**: Allows the user to run a program without commanding switch card or instruments. This option is useful as a debugging tool.
- Cache: Per the IVI specification, this option "specifies whether or not to cache the value of attributes." Caching allows IVI drivers to maintain certain instrument settings to avoid sending redundant commands. The standard allows for certain values to be cached always or never. In VTI IVI-drivers, all values used are of one of these types. As such, any values entered have no effect.
- QueryInstrumentStatus: Queries the instrument for errors after each call is made. As implemented in the VTI IVI drivers, instruments status is always queried regardless of the value of this property.
- **DriverSetup**: Must be last, and contains the following properties:
 - Logfile: Allows the user to specify a file to which the driver can log calls and other data.
 - **Logmode**: Specifies the mode in which the log file is opened. The allowed modes are:
 - w: truncate s the file to zero length or creates a text file for writing.
 - **a**: opens the file for adding information to the end of the file. The file is created if it does not exist. The stream is positioned at the end of the file.
 - **LogLevel**: Allows the user to determine the severity of a log message by providing a level-indicator to the log entry.
 - **Slots**: This is the most commonly used option and it allows for a slot number or a slot number and a card model to be specified.
 - "Slots=(2)" Just slot 2.
 - "Slots=(2=EMX_75xx)" slot and card model
 - "Slots=(2,3)" Multiple slots
- **InterchangeCheck**: Boolean option that enables/disables IVI Interchangeability checking. As implemented in the VTI IVI drivers, values entered for this property have no effect.
- **RangeCheck**: Boolean option that enables or disables driver validation of user-submitted values. As implemented in the VTI IVI drivers, validation of user inputs is always performed at the firmware level regardless of this property's value.
- **RecordCoercions**: Boolean option that enables driver recording of coercions. As implemented in the VTI IVI drivers, coercions are handled in the firmware and cannot be recorded.

BASIC OPERATION

The EMX-75xx Series is a family of high-performance PXIe modules consisting of multiple I/O configurations and logic levels. Dedicated input or output cards are available for high channel count applications while other cards provide ultimate flexibility with eight, 8-bit ports (64 channels) that can be configured as an input or output under programmatic control

Voltage

This example covers the main functionality of the device: setting a voltage as an output in a port. Note that the voltage should be set first, then enabled. This prevents enabling the port with the default value enabled, which is the maximum value.

C++

```
//For Microsoft products
#import "IviDriverTypeLib.dll" no_namespace
#import "VTEXDio.dll" no_namespace
int main()
{
    //Windows driver creation
    ::CoInitialize(NULL); //Start the COM layer
    try
    {
    IVTEXDioPtr Dio( uuidof(VTEXDio));
}
```

/*We chose to give this driver an empty options string. If you have more than one DIO card in your chassis, you will have to give it options such as a slot number. This is because the DIO driver does not support more than one card per driver instance. Note also that we set the reset flag so that we can get a clean start with the unit */

Dio->Initialize("TCPIP::10.20.1.5::INSTR", VARIANT TRUE, VARIANT TRUE, "");

/* Now we get to the meat of the example code. First, we want to drill down into the ports interface. The first thing we always want to do is set a voltage. Many other operations in the ports interface depend on having a voltage set. */

```
Dio->Normal->Ports->Item["PORT1"]->VoltageRange = 5.0;
```

/* By default, ports are set to input direction and normal polarity. This means we should be able to read the current state of the pins on the 5V range, as long as we don't have an OverCurrent condition. Let's check for OverCurrent before we read the data back. */

```
if(Dio->Normal->Ports->Item["PORT1"]->LatchedOverCurrent == 1)
{
//The port is in an OverCurrent state, so we would want to take some action here.
}
```

/* We want to check the Latched OverCurrent because while the OverCurrent tells us if we are in an OverCurrent state now, the LatchedOverCurrent bit will tell us if we have ever had one. If we have ever had an OverCurrent condition, the port will be stuck in the reset state until we fix the inputs and call ResetOverCurrent. Now that we've verified there's no OverCurrent condition, Let's read some data. */

int data = Dio->Normal->Ports->Item["PORT1"]->Data;

/* We can also change our Polarity if we want to read the data inverted. */

```
Dio->Normal->Ports->Item["PORT1"]->Polarity = VTEXDioPolarityInverse;
data = Dio->Normal->Ports->Item["PORT1"]->Data;
```

/*Now let's pick another port and set it to an output, and output some data on it. Changing the direction to Output allows us to write data as well as read it back. Note that we also have to set a voltage on the port before we can write data.*/

```
Dio->Normal->Ports->Item["PORT2"]->Direction = VTEXDioDirectionOutput;
Dio->Normal->Ports->Item["PORT2"]->VoltageRange = 3.3;
Dio->Normal->Ports->Item["PORT2"]->Data = 128;
```

/* Changing the Polarity of an output changes both the output and readback polarity. This means the user will always read back what they wrote, but the opposite signal will be placed on the line. $\ast/$

Dio->Normal->Ports->Item["PORT2"]->Polarity = VTEXDioPolarityInverse; Dio->Normal->Ports->Item["PORT2"]->Data = 128; //Looks the same as above, really outputting 127 data = Dio->Normal->Ports->Item["PORT2"]->Data; //Will return 128.

/* The Configure call lets us set all the values for a particular port quickly. Here we will configure the port with a direction of Output, a Polarity of Normal, a VoltageSource of User, and a voltage of 5V TTL Emulation (which has no effect, since the voltage source is set to User. $\star/$

```
Dio->Normal->Ports->Item["PORT3"]->Configure(VTEXDioDirectionOutput,
VTEXDioPolarityNormal, VTEXDioVoltageSourceUser, -1.0);
```

/* We can also work with multiple ports at once. The ReadPorts and WritePorts functions allow us to set or get data from several ports at a time. Setting data on ports with an Input direction is ignored. $\ast/$

Dio->Normal->WritePorts(VTEXDioDataWidth16, 2, 255); //Writes a data of 255 on port 2, and 0 on port 3.

```
Dio->Close();
::CoUninitialize(); //Turn off the COM layer.
}
catch(...)
{
    //Exception handling here
}
return 0;
```

C#

```
using System;
using System.Runtime.InteropServices;
using VTI.VTEXDio.Interop;
namespace PortConfiguration
    class PortConfiguration
        static void Main(string[] args)
        {
            try
            {
                VTEXDio Dio = new VTEXDio();
                trv
                {
                    Dio.Initialize("TCPIP::10.20.1.6::INSTR", true, true, "");
                    Dio.Normal.Ports.get Item("PORT1").VoltageRange = 5.0;
                    /* By default, ports are set to input direction and normal
polarity. This means we should be able to read the current state of the pins on the 5V
range, as long as we don't have an OverCurrent condition. Let's check for OverCurrent
before we read the data back. */
                    if (Dio.Normal.Ports.get Item("PORT1").LatchedOverCurrent == true)
```

//The port is in an OverCurrent state, so we would want to take some action here. $/\,{}^{\star}$ We want to check the Latched OverCurrent because while the OverCurrent tells us if we are in an OverCurrent state now, the LatchedOverCurrent bit will tell us if we have ever had one. If we have ever had an OverCurrent condition, the port will be stuck in the reset state until we fix the inputs and call ResetOverCurrent. Now that we've verified there's no OverCurrent condition, Let's read some data. */ int data = Dio.Normal.Ports.get Item("PORT1").Data; /* We can also change our Polarity if we want to read the data inverted. */ Dio.Normal.Ports.get Item("PORT1").Polarity = VTEXDioPolarityEnum.VTEXDioPolarityInverse; data = Dio.Normal.Ports.get Item("PORT1").Data; /*Now let's pick another port and set it to an output, and output some data on it. Changing the direction to Output allows us to write data as well as read it back. Note that we also have to set a voltage on the port before we can write data.*/ Dio.Normal.Ports.get Item("PORT2").Direction = VTEXDioDirectionEnum.VTEXDioDirectionOutput; Dio.Normal.Ports.get Item("PORT2").VoltageRange = 3.3; Dio.Normal.Ports.get Item("PORT2").Data = 128; /* Changing the Polarity of an output changes both the output and readback polarity. This means the user will always read back what they wrote, but the opposite signal will be placed on the line. */ Dio.Normal.Ports.get Item("PORT2").Polarity = VTEXDioPolarityEnum.VTEXDioPolarityInverse; Dio.Normal.Ports.get Item("PORT2").Data = 128; //Looks the same as above, really outputting 127 data = Dio.Normal.Ports.get Item("PORT2").Data; //Will return 128. /* The Configure call lets us set all the values for a particular port quickly. Here we will configure the port with a direction of Output, a Polarity of Normal, a VoltageSource of User, and a voltage of 5V TTL Emulation (which has no effect, since the voltage source is set to User. */ Dio.Normal.Ports.get Item("PORT3").Configure(VTEXDioDirectionEnum.VTEXDioDirectionOutp ut, VTEXDioPolarityEnum.VTEXDioPolarityNormal, VTEXDioVoltageSourceEnum.VTEXDioVoltageSourceUser, -1.0); $/\star$ We can also work with multiple ports at once. The ReadPorts and WritePorts functions allow us to set or get data from several ports at a time. Setting data on ports with an Input direction is ignored. */ Dio.Normal.WritePorts(VTEXDioDataWidthEnum.VTEXDioDataWidth16, 2, 255); //Writes a data of 255 on port 2, and 0 on port 3. Dio.Close(); } catch (COMException e) { //Error handling for driver-related errors goes here } } catch (Exception e) //Error handling for instantiation errors goes here } } }

SECTION 4

SFP OPERATION

INTRODUCTION

The EMX-2500 chassis accommodates the EMX-75XX card and provides an internal web page, which allows easy configuration, management and troubleshooting of the device. This internal Soft Front Panel (SFP) is a JavaScript based application which is designed to work, within web browser environment. If you know the IP address of the instrument, you can type it in the address bar of any modern web browsers, such as Microsoft Internet Explorer, Mozilla Firefox etc.

To open the embedded web page, simply type the IP address of the instrument into browsers address bar, and navigate accordingly. In order for your browser to communicate with the instrument, the instrument and your computer should be within the same network, and may require permissions from your network/computer administrator.

There are various ways to search the IP address, and other network configuration parameters of the instrument. The easiest method is to refer to the embedded display on the instrument, and use the menu key to navigate to necessary details. However, if the device display is not physically accessible, you can use LXI Discovery tool, or any standard IO Libraries tool, such as National Instruments (c) Measurement and Automation Explorer (MAX) and the Keysight (formerly Agilent) (c) Connection Expert (ACE) to discover the instrument. The instrument also supports mDNS protocols, so that any tools meant for Zero Configuration Networking, such as Apple ® Bonjour ® or Avahi, can also be used to discover the instrument. For more information on installation of these software utilities, please refer to their respective vendors.

The LXI Discovery tool is a free utility, available for download from LXI Consortium itself. It uses both VXI-11, as well as mDNS protocols to detect the LXI instruments present in your network. Once installed, this software will discover EMX-2500 instruments, if available, as shown below.

(
VTI Instruments Corporation, EMX-2500, 687000, 1.9.6			
VTI Instruments Corporation, EX1044, 736470, 1.5.8			
VTI Instruments Corporation, EX1266, 123456, 3.13.11			

FIGURE 4-1: LXI DISCOVERY TOOL WITH EMX-2500 SELECTED

Alternatively, the EMX-2500 may also be discovered using Internet Explorer's Bonjour for Windows plug-in. The IP address of the EMX-2500 can also be entered into the address bar of any web browser to view the embedded web page. By default, the EMX-2500 will first attempt to use DHCP to set its IP Address. If DHCP is not available on the network it is connected to, it will instead use Auto IP. Determining the Auto IP address is discussed in the **Error! Reference source not found.** Other discovery methods, such as VXI-11, can be used as well.

COMMON ISSUES

Although Ethernet is an easy connectivity option, some users may experience difficulty discovering LXI devices. Most often, these issues have been caused by networking issues, such as the instrument and host computer being connected to different sub-nets of the network. The user can either search internet or contact their system/network administrator for assistance on these issues. Here are few other causes that may be present in the user system which may obstruct instrument discovery:

It is possible that the user computer, can have multiple network adaptors (physical/virtual). Common example of this case, is use of Wireless Internet/Wi-Fi in Laptop computers, whose Wired Ethernet connections are connected to LXI device connected network. In some cases, virtual network adaptors could have been created for use by some of the installed applications on user system. The easy solution to these problems is to disable all other Ethernet connections and so force the computer to select the network port which is used by LXI Instrument.

Firewall

It is possible that the firewall of the computer may be stopping the data traffic to the connected LXI device. It may not be always feasible to stop the Firewall completely, and hence the user may contact their computer administrator for making exceptions in Firewall configuration to allow LXI data traffic. Here are the list of ports and protocols, typically used by LXI devices.

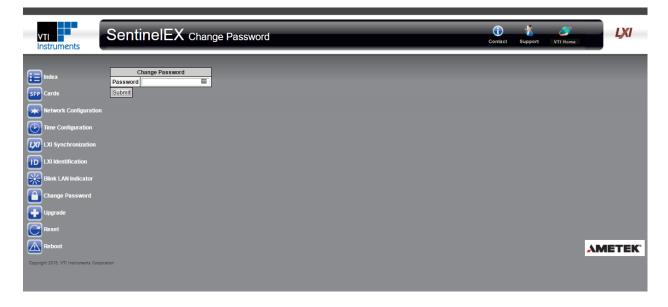
Protocol / Service	Port	Base Protocol	Remarks
mDNS	5353	UDP/TCP	Zero-config protocol for <hostname>.local address resolution; service discovery;</hostname>
HTTP	80	ТСР	Multicast 224.0.0251, FF02::FB Instrument web pages (SFP) and driver communication
ICMPv4		ICMP	Typically enables echo request/respond for ping
ICMPv6		ICMP	Optional - Typically enables echo request/respond for ping, also SLAAC for IPv6 addresses, RDDNS
Arp		Arp	Used to confirm address assignments
DHCPv4	67/68	UDP/TCP	IPv4 address assignment, DNS Server, Dynamic DNS, Gateway
DNS	53	UDP	Naming service
SSH	22	TCP	Bidirectional interactive text oriented communication
RPC port- mapper	111	UDP/TCP	Builds upon Sun-RPC and port-mapper
VXI-11	Varies	ТСР	VXI-11 instrument discovery The exact port number varies; query the RPC port-mapper to
			determine which port is current in use
LXI-eventsvc	5044	UDP/TCP	LXI Event support for instrument triggering; multicast 224.0.23.159, FF02::138. LXI Events can use other ports also, but default port number is 5044
Ptp-event	319	UDP/TCP	LXI Profile IEEE 1588
			Precision Time Protocol (PTP); multicast 224.0.1.129, FF02::181
Ptp-general	320	UDP/TCP	LXI Profile IEEE 1588 Precision Time Protocol (PTP); multicast 224.0.1.129, FF02::181
Data stream	9900	TCP	Driver data stream

TABLE 4-1: STANDARD PORTS, PROTOCOLS, AND SERVICES

GENERAL WEB PAGE OPERATION

When initial connection is made to the EMX-2500, the instrument home page, or **Index**, appears. This page displays instrument-specific information. This page is accessible from any other instrument page by clicking on the EMX-2500 web page header. The EMX-2500 Navigation Menu is displayed on the left hand side of every internal web page. The entries on the Navigation Menu represent two types of pages:

Status: These pages perform no actions and accept no entries. It provides operational status and information only. The Index page is an example of a status page.


Entry: These pages display and accept changes to the configuration of the instrument. The **Network Configuration** page is an example of an entry page. Use of the entry-type web pages in the EMX-2500 are governed by a common set of operational characteristics:

Pages initially load with the currently-entered selections displayed.

- Each page contains a Submit button to accept newly entered changes. Leaving a page before submitting any changes has the effect of canceling the changes, leaving the instrument in its original state.
- Navigation through a parameter screen is done with the Tab key. The Enter key has the same function as clicking the Submit button and cannot be used for navigation.

LOGIN

When accessing a page that allows changing configuration parameters of the EMX-2500, a password may be required. If so, the Login page will appear.

FIGURE 4-2: LOGIN PAGE

To log in, simply enter the password in the given text field, and press the Submit button. By default, the EMX-2500 has no password. To change the password, visit the Change Password page. If the password is unknown, performing a network reset operation will reset the EMX-2500 to no password.

INDEX

The Index page provides the general information about the EMX-2500.

VTI Instruments Corporatio	× (+						
3 10.214.53.78		⊽ C ⁱ Q	Le.	>	☆ 自 ♥	+	â 9
VTI Instruments	SentinelEX	Index	Contact	Support	S VTI Home		LXI
	Model	EMX-2500					
Index	Manufacturer	VTI Instruments Corporation					
FP Cards	Serial Number	714404					
	Description	VTI SentinelEX EMX-2500 - 714404					
Network Configuration	LXI Version	1.4 LXI Core 2011					
Time Configuration	Extended Functions	LXI Event Messaging LXI Clock Synchronization LXI Timestamped Data LXI Event Log LXI IPv6					
LXI Identification	Hostname	EMX-2500-714404.local. emx-2500-714404.ametek.com					
Blink LAN Indicator	MAC Address	00:0d:3f:01:2d:1e					
5	IPv4 Address	10.214.53.78					
Change Password	IPv6 Address	fe80::20d:3fff:fe01:2d1e					
Upgrade	Instrument Address String	TCPIP::10.214.53.78::INSTR TCPIP::[fe80::20d:3fff:fe01:2d1e]::INSTR					
Reset	Firmware Revison	1.9.6					
	IEEE-1588 Time	12696.1153313					
Reboot	Current Source of Time	PTP2					TE

FIGURE 4-3: EMX-2500 CHASSIS MAIN WEB PAGE

The **Index** is accessible from any other instrument page by clicking on the EMX-2500 web page header. The EMX-2500 **Command Menu** is displayed on the left-hand side of every internal web page. The entries on the command menu represent three types of pages:

- *Status* This type of page performs no action and accepts no entries. It provides operational status and information only. The **Index** page is an example of a status page.
- *Action* This type of page initiates a command on the instrument, but does not involve parameter entry. The **Reboot** page is an example of an action page.
- *Entry* This type of page displays and accepts changes to the configuration of the instrument. The **Time Configuration** page is an example of an entry page.

Use of the entry-type web pages in the EMX-2500 are governed by a common set of operational characteristics:

- Pages initially load with the currently-entered selections displayed.
- Each page contains a **Submit** button to accept newly entered changes. Leaving a page before submitting any changes has the effect of canceling the changes, leaving the instrument in its original state.
- Navigation through a parameter screen is done with the **Tab** key. The **Enter** key has the same function as clicking the **Submit** button and cannot be used for navigation.

Notes on Web Page Use

If a window needs to be resized, this should be done when the window opens. Resizing requires a refresh which causes the current state to be lost.

VTI Instruments Logo

The VTI Instruments logo that appears on the upper left of all EMX-2500 web pages is a link to the VTI Instruments corporate website: <u>http://www.vtiinstruments.com</u>.

The remainder of this discussion will focus on the EMX-75xx soft front panel. For more information on other EMX-7510 soft front panel elements, please refer to the *EMX-75xx Series User's Manual*.EMX-75xx Soft Front Panel

To navigate to the EMX-75xx soft front panel, click on **Soft Front Panel** in the **Command Menu** (see Figure 4-4). Next, select **DIO EMX-75xx** from the list of cards installed in the EMX-75xx.

FIGURE 4-4: EMX-75XX SOFT FRONT PANEL MAIN PAGE

MONITOR AND CONTROL PAGE

By default, the EMX-75xx SFP opens to the **Monitor and Control** view. From this view, the user can define the DIO's mode, its ports configurations. Although the SFP does not expose the entire functionality of the DIO, the SFP can be used to set up the EMX-75xx in most applications.

Device Information Monitor and Control				
Port 1 Data 255 Voltage 3.3 Direction Input Polarity Normal	Port 2	Port 3	Port 4	
Port 5	Port 6	Port 7	Port 8	
Connected				
	Slo	t 0:6	×	

FIGURE 4-5: EMX-75XX SOFT FRONT PANEL (NORMAL MODE)

At the top of the Monitor and Control menu, the **Mode Select** drop menu is used to set the EMX-75xx for either **Normal** or **Pattern** mode. The settings for each mode will now be discussed.

NORMAL MODE CONFIGURATION

When normal mode is selected, the user can define each port independently.

Port Configuration Fields

For each Port, the following settings can be configured.

Port 1		Port 2	
	00		000000000000000000000000000000000000000
Data	255	Data	255
Voltage	3.3	Voltage	3.3
Direction	Input 🔍	Direction	Input 🔻
Polarity	Normal 🔍	Polarity	Normal 🔻

FIGURE 4-6: PORT CONFIGURATION FIELDS

- **Data Indicators**: The LED indicators in each port configuration section indicate the data value this is being sent by or received by the indicated port. The data is an 8-bit integer with the green LEDs indicating an output high (1) and a red LED indicating an output low (0).
- **OC**: If an over-current event occurs, the **OC** indicator will turn **red**, indicating that actions should be taken by the user.
- **Data**: When the direction is set to **Output**, the user can enter the data value that will be sent on the selected port.
- Voltage: Select the voltage range for the port. Allowable values are -2.0, -1.0, (output only), 3.3, 5.0, 12.0, 24.0, and User Voltage Source. Note that the -2.0 and -1.0 are not voltage values, but correlate to LV emulation and TTL emulation, respectively hence if the user sets that value the direction will be changed to Output automatically.
- Direction: Sets the port as either an Input or an Output.
- **Polarity**: Sets the ports polarity as either **Normal** or **Inverse**.

PATTERN MODE CONFIGURATION

Currently, Pattern mode feature is not available for EMX-75XX card.

DEVICE INFO TAB

If the **Device Info** tab is clicked, information regarding the selected instrument will be displayed including the versions of the SFP, firmware, and hardware.

Device Information Monitor and Control	
VTI Instruments Corportation	
Version Information 9 Soft Front Panel Version: 3.13.3 9 Firmware Version: EMX-7510 9 CPLD Version: 0 9 FPGA Version: 0xe	
Connected	
Slot 0:6	×

FIGURE 4-7: DEVICE INFORMATION WEB PAGE